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Static deformations of  simple shear of  a material composed of  identical spherical particles are consid- 
ered on the basis of  maximal configurational entropy of the system macrostates. I t  is established theo- 
retically and experimentally that the same principle holds also in s low shear f low of a material character- 
ized by a universal value of  the particle concentration which is independent of  the initial concentration. 

The number of natural phenomena and engineering applications related to the deformation and motion of loose 
materials is extremely great. The main problem arising in the theoretical description of such processes lies in the derivation 
of a physically substantiated system of fundamental rheological relations which would allow one to close the system of 
conservation equations for the indicated media. Owing to the objective complexity of the considered systems composed of 
a great number of particles and to quite significant difficulties associated with the description of their random behavior, the 

problem is still far from having been solved satisfactorily, even though most serious efforts have been made. 
Attempts at a semiempirical solution of this problem usually involve traditional methods of plasticity theory [1] or 

simplified modeling of complex real displacements of the particles during deformation and flow with the aid of elementary 
shears in the slip planes and of rotation of these planes [2]. Such activity is oriented toward obtaining a phenomenological 
macroscopic law of the flow, in fact, without regard for the interaction between individual particles at the microlevel, 
which provokes extended discussions regarding the applicability of such an approach in principle [3, 4]. 

Since a continuum description does not permit one to trace either the displacements of individual particles or the 
resulting structural alterations in the granular medium, acceptance has been gained by interpretations of the behavior of a 

granular medium relying on the analysis of individual particles and their contacts (see, for example, [5, 6]). Without 
denying the correctness and usefulness of this approach, we should point out that, taken alone, it is far from being optimal 
for a noncontroversial formulation of the fundamental continuum equations. Here, the situation is very similar to that 
encountered in the mechanics of gases and other molecular and atomic systems of many particles: for all the intricacy of 

the behavior of separate molecules or atoms, the average states and motions of such systems are governed by relatively 

simple statistical laws and continuum equations. 
Thus, it seems natural to apply certain general principles and hypotheses of statistical physics to the investigation 

of the problem. Such an approach was, supposedly, realized for the first time by A. M. Vaisman and M. Ao Gol'dshtik 
[7]. The reasoning developed below largely exploits the methods of the above-mentioned study. 

We consider randomly packed isotropic systems of identical rigid spheres interacting when in contact. In view of 
randomness and isotropy, the states of such systems may be defined by a single macroscopic parameter, viz., by the 
volume concentration of particles in the system ~. Without loss of generality, we may employ dimensionless quantities, 
assuming the diameter of each sphere to be equal to unity. Following [1], to model the system we consider two layers of 
particles, one atop the other; here we regard the lower layer as orderly at the nodes of a square lattice in contact with 
adjacent spheres (Fig. la), and the upper randomized. If the average distance between the plane of centers of the lower- 
layer spheres and the centers of the second-layer spheres (reckoned along the z axis in Fig. lb) is equal to h, theta 

q~ = n/(6h). (1) 

For the maximal and minimal values of h, equal to unity and ~/~2, the corresponding concentrations are 0.524 and 

740. 
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Fig. 1. Sketch of construction of a model: top v iew of an orderly lower 
row of spherical particles wi th indication of the direction of virtual dis- 
placement and of the region for determining the distribution funct ion (a) 
and characteristic trajectory of the motion of an upper-row sphere wi th 
retained contact wi th lower-row spheres (b). 
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We will assume that all physically acceptable positions of any upper-layer sphere, retaining at least one contact 

with the lower-layer spheres, are equally probable. It is then natural to search for the distribution function oJ0(r) of the 
sphere center in its horizontal deflections from the position with maximal height (Fig. lb) based on the requirement of 
maximal configurational entropy of the macroscopic state, characterized by a specified average value of h [8]. Here, 

apparently, r 2 = x 2 + y2, where the x and y axes are in the plane of centers of the lower-layer particles. 

The configurational entropy of the system may be preset as [8] 

S = ~ Gini ln(e/ni) ,  
i 

where r h is the number of particles and G~ is the statistical weight of the state characterized by the deflection r i. Obviously, 

G i - h-'(r.~, and the condition of conservation of the total number of particles N and of equality of the average height of 

the particle centers above the plane of the lower-laye r centers to 110 has the form 

G~n i = N, ~ Ginih (ri) = ho. 
i i 

By introducing in the usual fashion the Lagrangian multipliers a and B, from the condition of entropy extremum as 
a function of n~, we obtain 

�9 ~oo (ri) ,~, niG~ = h -1 (ri) exp [a -q- 13h (ri)l. 

By determining oL and/3 from the normalization condition and the prescribed ho (or ~0) and by expressing r in 
terms of x and y, we eventually arrive at 

r (r) = exp ([~ -I/1 - -  r 2) 

A VT --  r ~ 

here for/3 there is the equation 

, A = j exp (8 v I - , , )  dzdy, (2) 
"i/1 - - r  2 

1 

A 
f f  exp (~ ] /1  - -  r ~) d x d y  ho = (3) 
J d  6% 
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The integration region in the above equations is determined by reasons of symmetry and is of square shape in Fig. 
la. Outside the square, it may be constructed proceeding from its periodicity along the x and y axes with the period 2A = 
1. 

Table 1 illustrates the parameters/3 and h0 as functions of ~0. 
We note that the study [7] incorrectly identified the values of ri with the deflections x~ along one of the axes. This 

corresponds to the situation with deformation of a system of identical cylindrical particles in the plane normal to their 
generatrices (recently, such systems have been studied quite intensely) but not of a real granular medium with spherical 

particles. 
It should also be noticed that Eq. (2) is derived neglecting the positions of neighboring spheres of the upper layer, 

which, generally speaking, is impermissible when describing high-concentration systems. For describing such systems, 
along with ordinary virial expansions there are a number of approximate models of the statistical physics of dense gases 
and liquids, which are also poorly suited to the analysis of concentrated systems. However, such an approach might be 
justified by a certain arbitrariness of the model considered and by its qualitative character; efforts to introduce correlations 

of particles into the analysis would hardly be appropriate at this stage of the research. 
Now we examine the variation in co(r) on displacement of all spheres of the upper row along the x axis, with 

contact between the upper and lower spheres retained. In principle, it is possible to study the consequences of linear 
displacement over the distance u, which is the same for all spheres, when the effective values of the shear 3'(r) = u/h(r) 

are different, or the centers of different spheres are displaced over different distances u(r) = 3,h(r) at y = const (as in 
[17]). In the first case, for u = 2A we, evidently, arriv e again at the initial state, i.e., any characteristics of the disturbed 

state as functions of u change periodically with the period 2A. In the second case, return to the initial state appears, as is 
easy to see, to be impossible. Since the experimental data (see the subsequent discussion) testify to the periodic variation 

of the state, we perform basic computations with reference to the first variant. 
We now point out that the study [7] examined displacement of diagonal chains parallel to themselves instead of 

displacement of chains in the direction of the lattice face. Because of the qualitative character of the model this distinction 

is quite insignificant. 
Clearly, in the statement considered, the distribution function ~o(x, y; u) of the disturbed state in horizontal 

deflections from a position of maximal height is governed entirely by the initial distribution ~00(r). There is no difficulty in 

representing this function, with allowance for Eq. (2), as 

co(x, y; u ) =  
exp ([5 2/I  - -  (x -k u) 2 - -  f )  

A V 1 - -  ( x  + u) 2 - -  y2 

co ( x ,  y ;  u) = e x p  ([3 ] / 1  - -  ( 2 A  - -  x - -  u) 2 - -  y2)  

A ]/I- - -  (2A - - x  - -u)  2 --y~ 

O < u < A - - x ,  

, A - - x < u < 2 A  

(4) 

(for definiteness u is assumed positive), where the normalization parameter A is, as before, determined by Eq. (2), and/3 

is the only root of Eq. (3). In Eq. (4), r z = x 2 + y2. 
The average values of h(u) and of the concentration ,p(u) for the disturbed state may be defined as 

h (u) = !" I V  1 - -  x ~ - -  y~co (x,  y; u) d x d y ,  
(5) 

r (u) = ztl(6h (u)), 

they represent functions of u as well as of 11o (or ~o0). In a similar way we may also determine the average values of any 

other state function, for example, the average shear: 

d x d y  
? ( u ) = u ! ' ~ c o ( x ,  g; u) V l - - x  2 - g ~  " (6) 

The volume strain may be expressed in the form 

0 = (ho - -  h (u)) h -~ (u). 
(7) 
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Fig. 2. Volume strain vs displacement with/Y determined from Eq. (3): curves 1-10 corre- 
spond to initial concentrations of 0.537, 0.560, 0.577, 0.590, 0.604, 0.617, 0.623, 
0.630, 0.635, and 0.660. 0, %. 

Fig. 3. Volume strain of a granular medium in static shear conditions: 1, 2) model of 
displacement with variable p (explanations are given in the text); 3) the same with con- 
stant/5'; 4) experimental data from [10]; 5, 6) curve presented in [7] and its shape when 
correctly calculated; 1, 3, 5, 6) ~o = 0.630; 2) 0.604; 4) 0.640. y, %. 

Figure 2 gives characteristic calculated results for 0 as a function of u for various initial concentrations. If the 
initial concentration is ~0 > 0.577 (h0 < 0.907), shear strain leads to an increase in the specific volume of the particles of 
the medium, i.e., to expansion of the medium. Otherwise, the granular medium is densified when deformed. The medium 

volume with ~0 = 0.577 is preserved without change during deformation. 
Figure 3 presents calculated results for 0 from Eq. (7) as a function of "r from Eq. (6), together with the known 

experimental curve of Taylor [10] for a dense sand (~0 = 0.640). The same figure shows a theoretical curve of [7] 
associated with displacement of the lower layer particles along a diagonal of the lattice for 7 = const, rather than in the 

face direction, as in Fig. la. Here, as indicated above, the dependence of the distribution function on the coordinate 
normal to the diagonal direction was disregarded. However, we have not managed to repeat the calculation of this curve; 
instead, with the above-mentioned coordinate ignored (i.e., actually for the system of parallel cylindrical fibers displaced 
over the distance u(xi) = ",/h(xi)), for 7 = const we have obtained a very steep curve 0(30, which is also given in Fig. 3 
and obviously does not check with the experimental data. For fairly small shears, the theoretical results are in agreement 
with the experimental data, which is not the case with increasing shear; here the theoretical curves lie much higher than the 
experimental one. The values of shear strain along the abscissa are given in percent of u to the initial height 11o. 

This discrepancy is likely connected with the premise that the lower layer of particles is orderly and with the 

corresponding neglect of its randomization, indispensable in the conditions of finite deformations, and, probably, with the 
fact that sand particles of irregular shape were used in Taylor's experiments, rather than identical spheres. Within the 
framework of the calculational scheme outlined, such randomization is disregarded, and the granular medium retains the 
memory of the initial state for an indefinitely long period of time. In reality, of course, the lower layer of spheres acts as 
an upper one for the underlying layer, and its statistical characteristics should not differ radically from those of the upper 
layer. Thus, irrespective of the initial state of the granular medium, its deformation must involve additional random plastic 
strains linked with redistribution of the particles which are just the ones to ensure the randomization mentioned above. 

The plastic strains result in the fact that a certain averaged behavior of the granular medium, not depending any 
longer on the initial state, should be observed instead of the periodic variation in properties according to the curves in Fig. 
2. Since random media inevitably cause a loss of memory of properties of the initial state, properties of the state 
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Fig. 4. Volume strain vs shear magnitude; experimental  points: 1, 2) t w o  
layers of particles at ~o o = 0 .550  and 0 .583 ,  respect ively,  3, 4) seven 
layers of particles, ~o o = 0 .560  and 0 .522;  calculated curves: 1) at vari- 
able p and ~o = 0 .560,  2) at constant  ~' and ~o o = 0 .590.  
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Fig. 5. Establ ishment of a l imit ing steady state according to the model at 
~o o = 0 .670 ,  0 .629,  0 .580,  and 0 .560  (curves 1-4, respect ively);  experi- 
mental points 1 and 2 correspond to deep f i l l ing at ~o o = 0 .560  and 
0 .522 ,  respect ively. 

achieved during a prolonged and fairly slow shear flow must be universal and time-independent. The exception may be 
only the situations where the plastic strain is hindered for one reason or another, as is the case, for example, with a very 

small number of particle layers between rigid walls confining the medium. 

If the shear flow proceeds with a rather low velocity, it is natural to employ the idea of quasi-equilibrium of the 

medium at any instant of time as the working hypothesis for the phenomenological description of properties of the indicat- 

ed limiting state of the deformed medium. This implies that any intermediate state should also satisfy the principle of 

maximal configurational entropy at the characteristic value of h(u). In such a situation, for the particle distribution function 
in deflections from the state with a maximal height, Eq. (1) is preserved with the previous definition of the normalization 
constant, but the quantity/3 must now be determined from Eq. (3), where the running h~ is used in lieu of the initial value 
h 0. At the same time, the distribution function in the state in question may also be considered as that obtained from Eq. (4) 

as a result of evolution of the state, with the given h(u) regarded as initial. This means that, as applied to the ultimate 
limiting state, the results calculated from Eqs. (1) and (2) must merely coincide. The requirement of such coincidence 

might be used as the condition determining the indicated limiting state. The corresponding curves computed from Eq. (1) 
are also given in Fig. 3. As is seen easily, the periodic variations in properties of the granular medium are actually lost. 

Some results of computations according to models with constant and variable/3 are presented in Figs. 4 and 5. The 
analysis of these figures confirms, on the whole, the idea of the granular medium forgetting its initial state. Besides, it 

follows from the character of the curves in Fig. 5 that the same stabilized state is in fact attained for any initial state, i.e., 
it is really universal. The particle concentration in this limiting state is exactly the same as the concentration of the 

granular medium not subjected to volume compression or expansion. 
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To check the reasoning set forth we conducted special experiments. We used an annular measuring cell of the same 
type as in the experiments of [11, 12]. The cell was confined in the vertical direction by two concentric disks made of 
organic glass, which permitted visual observations. The lower disk was attached rigidly to a rod with the aid of a connect- 
ing sleeve, through which it was actuated by an electric motor with a rotation frequency of 0.25 rpm. An annular groove, 
where the material considered was placed, was made in the lower disk. The thickness of the groove was 0.04 m and the 
average diameter 0.176 m. The upper disk was fastened to the rod via an attached bush, being a sliding bearing, and had 
an annular bulge that could move in the groove, of size smaller than the groove width by not more than 0.001 m. The end 
surface of the upper disk was lowered down the material filling the groove and pressed by a weight. During the experi- 
ments the upper disk was kept from rotating by an immovable beam free to move vertically. To prevent slip of the 

particles on the shear planes, one layer of grains of the same size as the tested particles was affixed to the groove bottom 
and to the bulge surface. The displacement of the upper disk from the lower one was measured by displacement indicators 
and tensometric sensors glued to flexible plates with one end attached rigidly to the fixed racks and the other descending 
freely to the surface of the upper disk. The tensometric sensors were connected through an amplifier to self-recorders. 

As the granular medium we used monofractions of glass spheres and of iron-ore pellets of average radii 0.0032 and 
0.01255 m, respectively. The concentration of the charge of height of several particle diameters was determined based on 
familiar methods [11] from the mass and density of separate particles and from the groove volume occupied by the loose 
material. In situations with only two rows of particles located in the groove the concentration was calculated from relation 

(1). It should be remarked that, because the real packing of the particles of a layer differs from a regular square one, the 
relationship between the concentration and the average spacing of particles in adjacent displaced layers corresponds to the 

formula 

tOo = a / ( k h o ) ,  

where the parameter k is not equal, generally speaking, to six (as in Eq. (1)) but is readily determined from experiments. 
Use of the above formula (1) was dictated by the circumstance that, owing to the wall effect, the particles cannot be 

packed closely, as in tanks of infinite size, and conventional methods are inapplicable. 
In the case of two horizontal rows of particles, the memory of the initial state is obviously retained, and the 

evolution of the system properties with increasing shear strain is periodic or at least nearly such in character, although 
there is no complete quantitative agreement with theoretical results (Fig. 4). The latter fact is quite understandable in the 
context of the qualitative nature of the model with constant/3, underlying the computations. More importantly, regardless 

of the initial concentration the granular medium indeed arrives at a state of the same concentration: all experimental points 
lie in the narrow range 0:89 < h= < 0.92. These deductions fully verify the hypothesis of a quasiequilibrium state of the 

granular medium achieved during its quasistatic deformation. Moreover, this hypothesis, even when applied within the 
framework of a fairly simple approximate model, leads to quite satisfactory quantitative results. In particular, the model 

allows one to describe with sufficiently high accuracy the classical Reynolds effect, i.e., densification of the deformed 
medium at small initial concentrations, corresponding to h= = 0.89-0.92, and its loosening in the opposite case. 

If the deformation proceeds at a significant or, in any case, finite rate, the steady states of the medium achieved 
here must differ from quasiequilibrium more strongly, the higher this rate. However, in this case also we may hope that 

the last state will prove to be a convenient "reference point" in constructing an expanded rheological law of the granular- 

medium flow depending on the value of the shear veIocity. 

NOTATION 

~o, volume concentration of the particles; h, average distance between the plane of centers of the lower-layer 
spheres and the centers of the upper-layer spheres; ~0(r), distribution function; r, horizontal deflection; S, configurational 

entropy; n, number of particles; G, statistical weight; N, total number of particles in the system; c~, /3, Lagrangian 

multipliers; 2A, spacing of the particle lattice; u, horizontal displacement; % average shear. 
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